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DESCRIPTION OF THE NEIGHBORHOOD OF THE PHASE EQUILIBRIUM LINE 

AND METASTABLE REGION WITH THE PARAMETERIC EQUATION OF SCALING 

THEORY 

V. F. Lysenkov and A. V. Shustrov UDC 536.7 

The deficiencies of the parameteric equation of scaling theory in the neighborhood 
of the phase equilibrium line and in the metastable region are analyzed. 

The equation of state obtained in the well-known parametric representation of the scaling 
theory [i, 2] is widely used in calculations in the critical region. The first approxima- 
tion of this representation, the so-called linear model, is themost widely studied. In this 
model the pressure and heat capacity at constant volume are calculated as follows [i, 2]: 

Ap=(1  +Ap)A~(p, T ) -  lAp! ~+~a(x)-A(T) ,  (1) 

pC~ M~< i_~/~ T -- T---~- [IAp f (x) - -  ~" (p~, T) Ap + B (T)], (2) 

: r ( 1 -  b~O~), Ap :kr~O,  A~= I AplSh(x). (3) 

Here we use the conventional notation in scaling theory. The scaling functions in (i) through 
(3) are determined in terms of the parameter 8: 

h ( x )  ~ aO(1 - -  0D(kl01)-6, f ~ )  = ak~(V - -  l) (kl01)=/~. (4 )  
2~b 2 

In o rder  to proceed  f u r t h e r  one must r e l a t e  the  s c a l i n g  v a r i a b l e  x = ~/[Ap[1/~ wi th  0 and 
also with expression for the scaling function of the isothermal compressibility fz = [~h(x) - 
8-1xh'(x)] -I. From (3) one easily obtains 

x = (I -- b~o ~) (k lOl) -~/~ , (5 )  

L (x) = k (k I Ol) ~-' [1 + 2 (p % ~ ) - - 3  03]-~ 
a 1 - - 2 p  " (6) 
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Fig. i. The critical region: i) experiment; 2) linear scaling theory model; 
3) equation of [3]; 4) calculated subcritical isotherm according to the 
linear scaling theory model; 5) phase equilibirum line. 

Fig. 2. Phase equilibrium lines: i) experiment; 2) linear scaling theory 
model; 3) equation of [3]. 

In this parametric representation the saturation line is given by 82 = I such that for e 2 < i 
equations (I) through (6) describe the single-phase region and for 82 > i they describe the 
metastable region. 

In Fig. i we show the typical shape of the isotherms obtained from the linear scaling 
theory model. Note the unusual form of the subcritical isotherms, which is due to the fact 
that the function (5) is double-valued and has an extremum when e 2 = ((i - 2B)b2) -l In order 
to avoid ambiguities in calculations with the linear model, one imposes the restriction e 2 
((I - 28)b2) -~. As seen from Fig. i, the subcritical isotherms do not have an extremum in 
the metastable region. That is, in this approach there is no spinodal on the calculated 
thermodynamic surface. One can verify this directly by solving the equation fz-l(x) = 0, 
where fz(X) is given in the form (6). This equation does not have real roots. It then fol- 
lows that the linear scaling theory model incorrectly describes the features of the thermody- 
namic surface in the metastable region. This deficiency of the linear model is probably also 
present in a certain neighborhood of the phase equilibrium line in the direction of the single- 
phase region. Hence this deficiency of the linear model should affect the accuracy of the 
calculation of the caloric functions, for example C v. Indeed, the working region of the 
linear model in density is I&pI ! 0.2 for the calculation of only thermal data [2]. This 
is illustrated in Fig. i. For T > T K the isotherms are qualitatively correct. The heat 
capacity at constant volume C v is correctly described inside a significantly narrower region: 

0 . 0 6  [1]. 

Evidently this assumption confirms analysis based on an equation of state expanded into 
the critical region which takes into account the next approximation of the scaling theory. 
In this case we have [i, 3]: 

oCo Mp~ 
T T~ 

A F == arP~ 0 ( 1 - - - 0  ~) -~-cr  ~+~ O, 

[ ak'~(?-- 1) r - ~ -  kc(?-~ A) r -~+A 
2c~b 2 2b2(1 -- (1 --- 2~) b~0 2) 

- -  F" (pr, T) Ap + B (T)] @ 

J 

(7) 

(8) 

It follows from (8) that when e 2 § ((i - 2B)b2) -I the heat capacity at constant volume 
diverges in the metastable region. That is, this equation for C v satisfies the "pseudo- 
spinodal" hypothesis [4]. This in turn indirectly demonstrates the presence of a spinodal. 
One can see this directly by solving the equation fz-1(x) = 0 for the new scaling functions 
from (7) and (8). It is interesting to study how widely the boundaries of the working region 
of this equation can be extended using this device. It turns out that in the calculation of 
Ap the expanded equation of the scaling theory is correct for l&pl ! 0.3, and so in this sense 
little is changed from the linear model. Moreover, as seen from Fig. i, the isotherms still 
behave qualitatively incorrectly when I~pl increases. 
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The picture is different for the calculation of C v. Here while the equation qualitatively 
correctly gives the "pseudospinodal" and spinodal, its working region for the determination of 
C v is extended almost up to IApl < 0.3. But as before, as one approaches the saturation line 
the calculated value of C v becomes systematically too small compared to the experimental re- 
sults [3]. In the connection with this, it is of interest to consider the positions of the 
spinodal and pseudospinodal. Indeed, the "pseudospinodal" equation 82 = ((I - 28)b2) -1 corre- 
sponds to Xps = 1.75x 0. This means that Xs/X 0 < 1.75 for the spinodal. The experimental 
data indicates that in terms of these coordinates the spinodal corresponds to Xs/X 0 = 3.3 
[5]. The difference is significant. 

But this, unfortunately, is not the only deficiency of theexpanded scaling theory model. 
In the linear scaling theory model the equation of the phase e~uilibrium line is 82 = i. In 
this case, as seen from (I), (3), and (4), Ap = 0 and Ap v = Ap ~. In the expanded model the 
phase equilibrium line is no longer given by the equation 82 = I. It follows from (7) that 
Ap = 0 when (i - 82 + c/a(rA)) = 0. The presence of the last term significantly deforms the 
phase equilibrium line. It is constructed in Fig. 2 for argon (the coefficients a and c and 
the index A were taken from [i, 3]). Hence the phase equilibrium line obtained from the ex- 
panded equation of state is incorrect in principle. This may not affect the quantitative 
characteristics of the equation. Therefore attempts to eliminate the deficiencies of the 
linear model by introducing the next approximation in scaling theory [3] are in large measure 
unsuccessful. The working region of the equation of state can be widened somewhat, but the 
isotherms and phase equilibrium line then becomes qualitatively incorrect when we move away 
from the critical point. Therefore the structure of the equation of state in the parameteric 
form (in the linear model, as well as in the next approximation) is in need of correction 
which would take into account more rigorously the physical behavior of matter in the critical 
region. 
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